Ќе анализираме како се менуваат енергиите на математичко нишало и на еластична спирала (правилно би било да се каже систем тело – спирала) во текот на осцилирањето.

Во крајната десна положба топката на нишалото мирува и тогаш има само потенцијална енергија, затоа што има висина во однос на рамнотежната положба.
Кинетичката енергија на нишалото во оваа точка е нула, затоа што брзината му е нула.
Слично е и со спиралата, само што тука станува збор за еластична потенцијална енергија. Таа е максимална, затоа што спиралата е максимално развлечена.
Кога ќе го пуштиме топчето, висината се намалува, што значи дека се намалува и потенцијалната енергија, а кинетичката енергија расте, бидејќи расте и брзината на топчето. Така е и со телото на спирала. Брзината на топчињата се зголемува под дејство на гравитациските сили, а брзината на телото на спирала под влијание на еластичните сили.

Во рамнотежна положба брзината на двете тела се максимални, па и нивните кинетички енергии. Потенцијалните енергии им се нула.

Телата продолжуваат да се движат, но сега забавено. Потенцијалната енергија на двете тела почнува да расте (со оддалечувањето на телото од рамнотежната положба, бидејќи висината расте), а кинетичката енергија сè повеќе се намалува (со намалувањето на брзината).
Во крајната лева положба на топката нишалото мирува и повторно има само потенцијална енергија. Кинетичката енергија на нишалото во оваа точка е нула. Потенцијалната енергија на телото на спирала е најголема затоа што спиралата е максимално збиена.
Телата продолжуваат да се движат, но сега забрзано. Потенцијалната енергија на двете тела почнува да опаѓа, а брзината (кинетичката енергија) да расте.
Во рамнотежната положба е сè исто како и во претходната анализа, само телата се движат во спротивна насока.
